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Abstract

Localization of an initially periodic buckling pattern is investigated for an axially compressed elastic±plastic cy-

lindrical panel of the type occurring between axial sti�eners on cylindrical shells. The phenomenon of buckling lo-

calization and its analogy with plastic ¯ow localization in tensile test specimens is discussed in general. For the

cylindrical panel, it is shown that buckling localization develops shortly after a maximum load has been attained, and

this occurs for a purely elastic panel as well as for elastic±plastic panels. In a case where localization occurs after a load

maximum, but where subsequently the load starts to increase again, it is found that near the local load minimum, the

buckling pattern switches back to a periodic type of pattern. The inelastic material behavior of the panel is described in

terms of J2 corner theory, which avoids the sometimes unrealistically high buckling loads predicted by the simplest ¯ow

theory of plasticity. Ó 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Localization, in the sense of a more or less abrupt change from a smoothly varying deformation pattern
to a pattern involving one or more regions of highly localized deformation, occurs in a wide variety of
circumstances, including shear band localizations in structural metals, rocks and concrete, and localized
tearing in sheet forming operations. The onset of necking in the round bar tensile test is a classic example of
this type of localization. Consid�ere (1885) showed that necking initiates at the maximum load point, at least
for the case of a long thin bar (Hutchinson and Miles, 1974).

A similar observation in structural buckling is that the ®nal buckled con®guration is a localized mode in
contrast to the periodic mode associated with the critical buckling load. The experiments of Moxham
(1971) show that the ®nal collapse mode of an axially compressed steel plate strip involves one buckle rather
than a periodic pattern. That the basic mechanism of buckling localization is associated with a bifurcation
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in the vicinity of the maximum load point ± in close analogy with the Consid�ere (1885) treatment of tensile
necking ± was pointed out by Tvergaard and Needleman (1980).

A bifurcation into a localized mode at, or subsequent to, the attainment of a load maximum is key to the
understanding of a variety of buckling phenomena. Examples include the transition from a diamond mode
collapse pattern for thin axially compressed circular cylindrical shells to an axisymmetric collapse mode for
thick shells; the buckling of railroad tracks induced by constrained thermal expansion of the rails and the
localized collapse of tubes subject to bending.

Relatively thick axially compressed circular cylindrical shells collapse axisymmetrically, while thinner
shells buckle in a diamond pattern. In all cases, the initial buckling mode for elastic±plastic circular cy-
lindrical shells is axisymmetric. In the plastic range, the critical stress for non-axisymmetric modes is
slightly higher than the critical stress for the axisymmetric mode. For thicker shells, bifurcation into a non-
axisymmetric mode occurs after a load maximum has been attained (Gellin, 1979; Tvergaard, 1983a).
Localization following the load maximum for thicker shells is what precludes the non-axisymmetric bi-
furcation and causes collapse to occur in an axisymmetric mode (Tvergaard, 1983b; Mikkelsen, 1995).

Railroad tracks buckle due to thermally induced compressive forces. The railroad track can be modeled
as a beam, representing the rails and cross-ties, on a softening foundation that represents the underlying
crushed stone layer. Using representative values for parameters, the critical temperature rise for the critical
buckling mode, which is a short wavelength periodic mode, is 600°C (Tvergaard and Needleman, 1981).
When account is taken of small imperfections, a maximum compressive force is usually attained, which
then leads to buckling mode localization. The maximum temperature rise with realistic imperfections is
�60°C (Tvergaard and Needleman, 1981).

A maximum moment is reached for a tube subject to bending, mainly due to ovalization of the cross-
section (the Brazier e�ect), with possible plastic yielding or buckling into a short wavelength pattern on the
compressed side of the tube, further decreasing the bending sti�ness. Tube collapse then takes place in a
localized mode (Tvergaard and Needleman, 1980; Kyriakides and Ju, 1992; Ju and Kyriakides, 1992).
Localized buckling also occurs under dynamic loading conditions and is of interest in connection with the
response of shock-absorbing devices. Results on the e�ect of inertia on the tendency for buckling pattern
localization and the e�ect this has on the energy absorbed during buckling are shown in Tvergaard and
Needleman (1983).

Narrow cylindrical panels occur in sti�ened cylindrical shells and, depending on their curvature, may or
may not have a load maximum associated with deformation in the periodic buckling mode. On the basis of
his general theory of elastic stability (Koiter, 1945), it has been shown by Koiter (1956) that su�ciently ¯at
elastic cylindrical panels subject to axial compression have a stable initial post-buckling response, and so do
not attain a load maximum in the vicinity of the bifurcation point. For more curved panels, the initial post-
buckling response is unstable so that a load maximum is attained in the vicinity of the bifurcation point and
the structure is imperfection sensitive. Tvergaard (1977) analyzed the post-buckling behavior and imper-
fection sensitivity of elastic±plastic cylindrical panels. The decrease in sti�ness associated with plastic
yielding increased the range of panel curvatures that give rise to imperfection sensitive response. Thus,
whether or not a cylindrical panel is prone to localization depends on the panel curvature and, for elastic-
plastic panels, on the strain hardening characteristics of the material.

In this article, we analyze the development of buckling pattern localization in elastic±plastic cylindrical
panels subject to axial compression. Two models that illustrate the main features of buckling pattern lo-
calization are reviewed; a simple one-dimensional model and a beam on a softening foundation. The models
show, in simple contexts, the association between a load maximum and buckling mode localization. For the
cylindrical panel, both cases where bifurcation into the periodic mode occurs after plastic yielding as well
as cases, where bifurcation occurs in the elastic range are considered. The e�ects of various types of im-
perfections are analyzed. In all cases, the association between a load maximum and localization is main-
tained.
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2. Models for localization

2.1. One-dimensional model

The localization of buckling patterns is analogous to the necking of tensile bars. A simple one-dimen-
sional model, Tvergaard and Needleman (1980), illustrated the basic mechanism involved. Consider a
homogeneous axially compressed bar constrained to remain straight, which can be regarded as a one-
dimensional model of a periodically buckled structure. The axial force is taken to be a nonlinear function of
the axial strain. The e�ects of both geometric and material nonlinearities are incorporated into the force±
strain response of the bar.

For a bar of length L, the end displacements are prescribed at x � 0, L. The incremental relation between
the axial force N and the strain � is

_N � K _�; _� � _u; x; �2:1�
where ( );x denotes di�erentiation with respect to the axial coordinate x and � _ � denotes incremental
quantities.

Incremental equilibrium requires that

_N;x � 0: �2:2�
At any stage of loading, one possible solution is continued homogeneous deformation. The possibility of a
bifurcation from the homogeneous state is sought, where the bifurcation mode consists of a localized region
that can undergo incremental straining di�erent from that in the bulk, although each region itself deforms
homogeneously.

Incremental equilibrium requires

_NA � _NB; �2:3�
where the subscripts A and B denote quantities outside and inside the localized region, respectively.

Since,

_NA � K _�A; _NB � K _�B �2:4�
incremental equilibrium implies

K� _�A ÿ _�B� � 0: �2:5�
Hence, the onset of localization is only possible at the maximum load point, i.e. when K� 0.

The post-localization response can be determined within the context of this bar model. Let LA and LB

denote the lengths associated with regions A and B, respectively. Then,

L � LA � LB: �2:6�
Since � � Du=Dx,

_� � �1ÿ q� _�A � q _�B; �2:7�
where q � LB=L.

Eqs. (2.7) and (2.3) combine to give

_� �
_N

KB

q

�
� �1ÿ q� KB

KA

�
: �2:8�

At localization KB � 0, while KB is negative after the maximum load. With KA algebraically larger than
KB, the post-localization traction±deformation gradient curve lies below the one for homogeneous straining

V. Tvergaard, A. Needleman / International Journal of Solids and Structures 37 (2000) 6825±6842 6827



and, the smaller q is, the more quickly the load drops. Hence, the post-localization sti�ness depends on the
size scale of the localized region and this length scale is set by factors outside the scope of the one-
dimensional analysis. For localized buckling in structures, the softening comes from geometric e�ects,
which set the size scale.

For tensile necking (where the sign of N is reversed), a full three-dimensional theory shows that the size
of the necked region in a tensile bar is set by the lateral dimensions of the bar (Hutchinson and Miles, 1974).
These equations also provide a one-dimensional model for shear band development (Needleman, 1988).
However, for shear bands there is no larger geometrical context to provide the length scale. The length scale
must be incorporated, implicitly or explicitly, into the material description, or the formulation of the
boundary value problem needs to be changed to include a length scale.

In structural buckling, the maximum load may be reached because of nonlinear geometric e�ects or
because of nonlinear material behavior. Whatever the cause, there is a strong tendency for localization
when a load maximum is reached so that the simple model has bearing on a variety of buckling problems
including, for example, the axially compressed plate strips of Moxham (1971), sti�ened panels, bent tubes
that reach a maximum load due to the Brazier e�ect (ovalization of the cross-section) and the axially
compressed cylindrical shells analyzed here.

2.2. Beam on a softening foundation

A simple structural model that illustrates the delay between the maximum load point and point of bi-
furcation leading to localization is a linear elastic beam of length L �0 6 X 6 L�, having bending sti�ness EI
and subjected to an axial load P. The beam rests on a foundation that provides a restoring force per unit
length F.

In the presence of an imperfection W , the governing equation is

EI
d4W
dX 4
� P

d2W
dX 2

� F � ÿP
d2W
dX 2

; �2:9�

where W �X � is the lateral de¯ection in addition to the initial deviation from the straight con®guration
measured by W �X �.

The beam is taken to be simply supported, so that the boundary conditions are

W � 0;
d2W
dX 2

� 0 on X � 0; L: �2:10�

The restoring force is taken to have the bilinear form

F � K1W for jW j 6 W0;
� K1W0 � K2�W � W0� for jW j > W0;

�
�2:11�

where the upper sign is used for W > 0 and the lower sign for W < 0. Attention is focused on softening
relations for which K2 < K1.

For a perfect beam �W � 0� and restricting attention to beams for which �K1=EI�1=4L � np, for some
integer n, the lowest bifurcation load is given by

Pc � 2�K1EI�1=2 �2:12�
with the bifurcation mode

Wc�X � � sin
npX

L

� �
: �2:13�
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An analytical solution can also be obtained for the periodic mode of the imperfect beam (Tvergaard and
Needleman, 1980). Bifurcation from the periodic mode can then be investigated numerically. Results from
Tvergaard and Needleman (1980) are presented in Fig. 1 for imperfections in the form of the critical mode
Eq. (2.13) using the nondimensional quantities

w � W
W0

; d � W
W0

; �2:14�

b � K2

K1

; k � P

2 K1EI� �1=2
: �2:15�

In Fig. 1, b � 0:1 and the dotted line shows the limiting value of the load as wm !1, where wm is the
lateral de¯ection amplitude. In the periodic mode, the load versus lateral de¯ection response is independent
of the length of the beam. The arrows mark, where bifurcation takes place for various values of
n � �K1=EI�1=4L=p. The bifurcation modes are constrained to be symmetrical about the center of the beam.
As the length of the beam increases, the bifurcation point approaches the maximum load point, which is the
bifurcation point according to the one-dimensional model in Section 2.1.

In Needleman and Tvergaard (1982), a full numerical solution, including the post-localization response,
was carried out for an imperfection given by

W � W0 d1 sin
mpX

L

�
ÿ d2 sin

�mÿ 2�pX
L

�
: �2:16�

Fig. 2 shows the resulting curves of load versus average axial strain � for b � 0:1; d1 � 0:5 and m � 9.
With d2 � 0, bifurcation into a localized mode occurs just beyond the maximum load point. With
d2 � 0:025, the buckling pattern remains nearly periodic until around the bifurcation point, and the

Fig. 1. Load versus lateral de¯ection amplitude for a column on a softening foundation with b � 0:1 (Tvergaard and Needleman,

1980).
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maximum load is nearly the same as for the case with d2 � 0. Near the bifurcation point, the buckles near
the center of the beam start to grow rapidly while those away from the center start to decay. The buckling
pattern at the maximum load point and the localized buckling pattern that develops subsequently are
shown in Fig. 3. The ``width'' of the localized region in Fig. 3 is set by the geometry of the structure. In
these calculations, the restoring force relation is taken to be elastic±plastic in that the sti�ness K1 is used in
Eq. (2.10), whenever _W W < 0.

The elastic beam on a softening foundation illustrates the characteristic features of buckling pattern
localization. The basic mechanism involves a bifurcation, subsequent to the maximum load point, from an
initial periodic buckling pattern. The ®nal collapse mode, as illustrated in Fig. 3, bears no resemblance to
the deformation pattern prevailing at the maximum load point. Nevertheless, it is the pre-localization
deformation pattern that determines the maximum load point.

3. Formulation of cylindrical panel problem

The axially compressed cylindrical panels to be analyzed here are taken to be part of a longitudinally
sti�ened cylindrical shell. The cylindrical panel occurs as a section of the shell bounded by two neighboring
sti�eners, and the local buckling mode of interest is one in which the sti�eners remain straight, while the
shell buckles in a short wave pattern between the sti�eners. The initial elastic post-buckling behavior of
such panels was analyzed by Koiter (1956), and it was shown that the post-buckling behavior is stable for
su�ciently ¯at panels, as for elastic plates, but unstable for more curved panels. A similar transition from
plate-like behavior, for rather ¯at panels to more unstable behavior for curved panels has been found by
Tvergaard (1977) for elastic±plastic cylindrical panels. In the present investigation with focus on buckling
localization, we are mainly interested in cases where the primary periodic buckling pattern is characterized
by an unstable post-buckling behavior.

The shell has thickness h, radius R, and the circumferential distance between the equally spaced sti�eners
is b (Fig. 4). The main e�ect of the sti�eners is to prevent waviness of radial de¯ections along their lines of

Fig. 2. Load versus average axial strain for an elastic column on an elastic±plastic foundation with K2=K1 � 0:1 (Needleman and

Tvergaard, 1982).
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attachment. As in KoiterÕs (1956) analysis of the elastic cylindrical panel, this is the only sti�ener constraint
accounted for in the present investigation. Thus, it is assumed that there is no constraint on tangential shell
displacements along the sti�eners, and that the torsional rigidity of the sti�eners can be neglected.

On the middle surface of the circular cylindrical shell, a point is identi®ed by the coordinates x1 and x2,
where x1 measures the distance along the cylinder axis and x2 measures distance in the circumferential

Fig. 3. (a) Elastic column on an elastic±plastic foundation with K2=K1 � 0:1. (b) Buckling pattern at the maximum load, �=�y � 1:07. (c)

Buckling pattern after maximum load, at �=�y � 1:72 (Needleman and Tvergaard, 1982).

Fig. 4. Part of axially sti�ened circular cylindrical shell, showing the cylindrical panels between sti�eners.
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direction. The displacement components are denoted ua on the surface base vectors and w on the outward
surface normal. The strain measures used are the nonlinear membrane strain tensor

�ab � 1
2

ua;b

ÿ � ub;a

�ÿ dabw� 1
2
acd�uc;a ÿ dcaw��ud;b ÿ ddbw� � 1

2
�w;a � dc

auc��w;b � dd
bud� �3:1�

and the linear bending strain tensor speci®ed by Koiter (1966)

jab � 1
2

w;a

ÿ� � dc
auc

�
;b
� w;b

�
� dc

buc

�
;a
ÿ 1

2
dc

a ub;c

ÿ ÿ uc;b

�ÿ 1
2
dc

b ua;c

ÿ ÿ uc;a

��
; �3:2�

where aab and dab are the metric tensor and the curvature tensor, respectively, of the undeformed middle
surface, and � �;a denotes covariant di�erentiation. Greek indices range from 1 to 2, while Latin indices (to
be employed subsequently) range from 1 to 3, and the summation convention is adopted for repeated
indices. It is noted that strain measures proposed by Niordson (1985) are identical with Eqs. (3.1) and (3.2),
except for small di�erences in the bending strain measure of the order of dc

a�cb.
The three-dimensional constitutive relations are taken to be of the form

_rij � Lijkl _gkl; �3:3�
where rij is the stress tensor, gkl is the strain tensor, Lijkl are the instantaneous moduli, and � _ � denotes an
incremental quantity. Since the stress state in the shell is approximately plane, only the in-plane stresses
enter into Eq. (3.3). Thus, the constitutive relations can be written as

_rab � L̂abcd _gcd; L̂abcd � Labcd ÿ Lab33L33cd

L3333
: �3:4�

The in-plane components of the Lagrangian strain tensor at a distance x3 outward from the shell middle
surface are approximated by

gab � �ab ÿ x3jab: �3:5�
The membrane stress tensor N ab and the moment tensor Mab in a shell with thickness h are taken to be

N ab �
Z h=2

ÿh=2

rab dx3; Mab � ÿ
Z h=2

ÿh=2

rabx3 dx3: �3:6�

Then, from Eqs. (3.4)±(3.6), incremental relations are obtained for _N ab and _Mab in terms of _�cd and _jcd. The
requirement of equilibrium is speci®ed in terms of the principle of virtual work.Z

A
fN ab d�ab �Mab djabgdA � P dU ; �3:7�

where A is the middle surface area, P is the total axial load acting on the cylinder, U is the axial dis-
placement at one end �x1 � a�, while at the other cylinder end zero axial displacement is prescribed.

As the buckling pattern is periodic in the circumferential direction, due to the constant sti�ener spacing,
only a shell section between the centers x2 � 0; b of the two neighboring cylindrical panels needs to be
considered. Due to the symmetry of mode displacements about these panel centers, the boundary condi-
tions can be speci®ed as

ou1

ox2
� u2 � ow

ox2
� o3w

o�x2�3 � 0 at x2 � 0; b: �3:8�

Across the line of attachment of a sti�ener continuity of all ®eld quantities is required, except for the
possible discontinuity of the transverse shear force resulting from the constraint
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ow
ox1
� 0 at x2 � b=2: �3:9�

The length of the shell section analyzed is denoted by a, and the symmetric boundary conditions at the two
ends are speci®ed as

u1 � 0;
ou2

ox1
� ow

ox1
� o3w

o�x1�3 � 0 at x1 � 0; �3:10�

u1 � ÿU ;
ou2

ox1
� ow

ox1
� o3w

o�x1�3 � 0 at x1 � a �3:11�

so that ÿU=a � �av is the speci®ed average strain in the axial direction.
The uniaxial stress±strain curve is represented by a piecewise power law with continuous tangent

modulus,

� �
r
E for r 6 ry;
ry

E
1
n

r
ry

� �n
ÿ 1

n� 1
h i

for r > ry;

(
�3:12�

where n is the strain hardening exponent.
It has been known for half a century that bifurcation calculations based on the simplest deformation

theory of plasticity give better agreement with experimentally obtained buckling loads than do similar
calculations based on the simplest ¯ow theory. Already, Batdorf (1949) realized that the bifurcation pre-
dictions of deformation theory could be rigorously justi®ed by appealing to a more sophisticated ¯ow
theory with a vertex on the yield surface. A comprehensive discussion of this ``plastic buckling paradox''
has been given by Hutchinson (1974).

To account for such e�ects, the present analyses assume that the elastic±plastic shell material develops a
vertex on subsequent yield surfaces, as described by the J2 corner theory proposed by Christo�ersen and
Hutchinson (1979). In this theory, the instantaneous moduli for nearly proportional loading are chosen
equal to the J2 deformation theory moduli and for increasing deviation from proportional loading the
moduli increase smoothly until they coincide with the elastic moduli for stress increments directed along, or
within, the corner of the yield surface.

With M0
ijkl denoting the deformation theory compliances, _gij � M0

ijkl _rkl, and Mijkl denoting the linear

elastic compliances, the plastic part of the compliances is Cijkl � M0
ijkl ÿMijkl. The yield surface in the

neighborhood of the current loading point is taken to be a cone in stress deviator space with the cone axis in
the direction

kij � sij Cmnpqsmnspq
ÿ �ÿ1=2

: �3:13�
Here, sij � rij ÿ gijrk

k=3 is the stress deviator tensor and gij is the metric tensor in 3-dimensional coordi-
nates. The positive angular measure / of the stress-rate direction relative to the cone axis is de®ned by

cos / � Cijklk
ij _skl Cmnpq _smn _spq
� �ÿ1=2

�3:14�

and a stress-rate potential at the vertex is formulated as

W � 1
2
Mijkl _rij _rkl � 1

2
f �/�Cijkl _rij _rkl: �3:15�

From this potential the strain rate is obtained as
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_gij �
o2W

o _rijo _rkl
_rkl � Mijkl�/� _rkl �3:16�

with / dependent compliances. Since the stress state in the shell is approximately plane, the in ± plane
stresses enter into Eq. (3.16), which is inverted to yield the plane stress incremental constitutive relations of
the form

_rab � L̂abcd�/� _gcd: �3:17�
The angle of the yield surface cone is speci®ed by /c, so that the transition function f �/� in Eq. (3.13) is

zero for /c < / 6 p. In the total loading range, 0 6 / 6 /0; f �/� is unity, and in the transition region,
/0 6 / 6 /c; f �/� is chosen to smoothly merge the deformation theory moduli with the elastic moduli in a
way which ensures convexity of the incremental relation.

More detailed descriptions of the J2 corner theory formulations in connection with buckling analyses
have been given previously (Needleman and Tvergaard, 1982; Tvergaard, 1983a) and shall not be repeated
here. Most analyses in the present paper assume a totally nonlinear material response, /0 � 0, and a rather
blunt vertex speci®ed by �bc�max � 100°, where cos b � _re 3_sij _sij=2

ÿ �ÿ1=2
in terms of the Mises e�ective stress

re � �3sijsij=2�1=2
.

For an elastic cylindrical panel, Koiter (1956) found the following expression for the critical bifurcation
stress

rc � ÿE
p2h2

3�1ÿ m2�b2
1
ÿ � h4

�
; h �

�������������������������12�1ÿ m2��4
p

2p
b�����������Rh�p �3:18�

valid when h 6 1 with the axial half wavelength equal to the panel width b. In the following, the parameter
h will be referred to as the panel curvature parameter. For h > 1, two axial wavelengths are critical si-
multaneously. A number of cylindrical panels to be considered here are taken to have h=b � 0:025;
ry=E � 0:002 and m � 0:3 so that the elastic bifurcation stress (3.18) exceeds the initial yield stress. For these
cases, the elastic±plastic bifurcation stress and the corresponding axial wavelength are determined by the
use of expressions speci®ed in Tvergaard (1977).

Numerical solutions of the incremental equilibrium equations are obtained by dividing the shell segment
analyzed into 24� 4 rectangular conforming ®nite elements. Within an element, each displacement com-
ponent is approximated by products of Hermitian cubics in the x1- and x2-directions, and integrals over the
middle surface are evaluated by 4� 4 point Gaussian quadrature, with 7 point Simpson integration
through the thickness.

As long as the average axial shortening increases monotonically, the end displacement can be prescribed.
However, after a load maximum, it is possible for the average axial strain rate to change sign. In such cases,
a special additional Rayleigh±Ritz procedure is used to prescribe a normal displacement increment instead
of the end displacement (Tvergaard, 1976).

4. Cylindrical panel results

To study the possibility of buckling localization, cylindrical panels with an initial imperfection are an-
alyzed, where the imperfection is speci®ed as an initial normal de¯ection of the form

w x1; x2
ÿ � � n

�
� n1 cos

px1

a

�
h cos

mpx1

a
cos

px2

b
: �4:1�

Here, n is the amplitude of an initial periodic imperfection, and the additional amplitude n1 speci®es a
small deviation from periodicity that makes the imperfection slightly larger near x1 � 0 than near x1 � a.

6834 V. Tvergaard, A. Needleman / International Journal of Solids and Structures 37 (2000) 6825±6842



For all the cases to be analyzed here, we take n1=n � 0:01. The length of the shell section to be analyzed is in
each case taken to be, a � mb=a, where the axial wavelength parameter a is calculated so that the imper-
fection wavelength in the axial direction agrees with the wavelength of the critical bifurcation mode in an
in®nitely long panel, according to J2 deformation theory.

In the ®rst case analyzed, the material parameters are ry=E � 0:002; m � 0:3 and n � 10, with
�bc�max � 100° and /0 � 0° in the J2 corner theory description. The shell thickness to panel-width ratio is
taken to be h=b � 0:025 and ratio of the panel width to cylinder radius, b=R, is speci®ed by taking h � 0:6 in
Eq. (3.18). Then, according to Tvergaard (1977), this is a case where an unstable post-buckling behavior is
expected to lead to buckling localization. The number of half-waves in the axial direction is taken to be
m � 6 in (Eq. 4.1), and a bifurcation analysis following expressions speci®ed in Tvergaard (1977) shows that
for J2 deformation theory the critical bifurcation stress and the corresponding axial wavelength are speci®ed
by rc=E � ÿ0:002220 and a � 1:125.

Fig. 5 shows the average axial compressive stress, rav, normalized by the bifurcation stress vs. the av-
erage axial strain, for three di�erent levels of initial imperfections. For the two smallest imperfection
amplitudes, n � 0:01 and n � 0:1, a maximum load is reached, with a rather steep load decay after the
maximum for the smallest imperfection. However, for the largest imperfection analyzed, n � 1:0, no
maximum is reached in the range analyzed. Therefore, based on the simple localization model, discussed in
Section 2, we expect that the buckling pattern will localize for the two smaller imperfection levels, but will
not localize for the larger imperfection level, and this is exactly the result obtained here. If load were the
prescribed quantity, equilibrium paths beyond the load maximum would be unstable. However, when axial
shortening is prescribed, the response remains stable after the load maximum, unless the axial shortening
also decreases along the equilibrium path.

Fig. 5. Average axial stress strain curves for cylindrical panel with h � 0:6 and n � 10, when n1=n � 0:01.
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To illustrate the behavior, the normal de¯ections along the center line of a panel, x2 � 0, are shown in
Fig. 6 for the smallest imperfection, n � 0:01, corresponding to three di�erent levels of deformation. It is
seen that at �av � ÿ0:00224, just before the load maximum, there is not yet any localization, but after the
load maximum the buckling de¯ection grows strongly in a localized region near x1 � 0, while the remaining
buckles slowly reduce their amplitude, due to the elastic spring-back under the reduced axial load.

It is noted that, due to the initial imperfections, no bifurcation occurs in the cases illustrated in Fig. 5.
However, for a perfect cylindrical panel, bifurcation into a periodic buckling pattern would occur ®rst, and
then, after a small amount of growth of the periodic mode, a secondary bifurcation would lead to the onset
of buckling localization.

In the next case analyzed, the shell material exhibits more hardening, n � 3, and the panel curvature
parameter is chosen to be h � 0:75, but, otherwise, all parameter values are unchanged. For this case, the
critical bifurcation stress and the corresponding axial wavelength parameter are rc=E � ÿ0:002639 and
a � 1:056. For this panel, it has been found (Tvergaard, 1977) that the curvature corresponding to h � 0:75
is large enough to give an initially unstable post-bifurcation behavior, but that more ¯at panels show plate-
like stable post-bifurcation behavior. The average axial stress vs. strain curves in Fig. 7 show that no
maximum is reached for the two larger imperfection amplitudes, whereas the smallest imperfection,
n � 0:01, results in a load maximum. The de¯ections along x2 � 0 in Fig. 8 illustrate the development of a
localized buckling pattern after the load maximum for n � 0:01. It is seen by comparing with Fig. 6 that the
material with more hardening results in a relatively longer localized region. For the intermediate imper-
fection amplitude, n � 0:01, where no maximum is reached in Fig. 7, the de¯ections in Fig. 9 illustrate that
the buckles remain periodic. All computations here are carried out using a 24� 4 mesh, but it is to be noted

Fig. 6. Normal de¯ections along the center line, x2 � 0, of cylindrical panel with h � 0:6; n � 10 and n � 0:01, when n1=n � 0:01.
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Fig. 8. Normal de¯ections along the center line, x2 � 0, of cylindrical panel with h � 0:75; n � 3 and n � 0:01, when n1=n � 0:01.

Fig. 7. Average axial stress strain curves for cylindrical panel with h � 0:75 and n � 3, when n1=n � 0:01.
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that a few computations have been repeated with a ®ner 36� 6 mesh. No mesh dependence has been found,
so it can be concluded that the 24� 4 mesh gives su�cient accuracy.

For the same panel as that considered in Figs. 7±9, average stress±strain curves are shown in Fig. 10,
corresponding to the imperfection amplitude n � 0:02. The solid curve represents material behavior
identical to that considered in Figs. 7±9. The lower, dashed curve represents a material that forms a more
sharp vertex on the yield surface, as speci®ed by /0 � /n=2 and �bc�max � 135°. The upper, dotted curve
represents a very blunt vertex speci®ed by /0 � 0° and �bc�max � 91°, which gives a response essentially
identical to that of J2 ¯ow theory. It is seen in Fig. 10 that a sharper vertex gives a more ¯exible response,
but in fact the three curves are very close, and the main conclusion from Fig. 10 is that the shell does not
show much sensitivity to the vertex description in this case. Thus, it can be expected that if all the present
localization studies had been based on J2 ¯ow theory, the predictions would not di�er much from those
found here.

Fig. 11 shows de¯ections at x2 � 0 corresponding to the solid curve in Fig. 10. At �av � ÿ0:00257, before
the load maximum in Fig. 10, the buckling pattern is still periodic, and then at �av � ÿ0:00310, localization
of the buckling pattern has occurred, as would be expected after the load maximum. But subsequently at
�av � ÿ0:00333, it is seen that the buckling pattern is again close to periodic. Localization is predicted while
the load decays, but the conditions change again when the load starts to increase. In fact, the switch back to
a near periodic pattern happens rather abruptly, leaving a small dent on the stress±strain curve, as is clearly
seen on all three curves in Fig. 10, near the load minimum. It is noted that this behavior is somewhat
analogous to the phenomenon of neck propagation in polymers, where localized necking occurs at a tensile
load maximum, but where the material in the neck is subsequently stabilized again as the slope of the stress±
strain curve changes from a negative to a positive value.

Fig. 9. Normal de¯ections along the center line, x2 � 0, of cylindrical panel with h � 0:75; n � 3 and n � 0:1, when n1=n � 0:01.
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Fig. 11. Normal de¯ections along the center line, x2 � 0, of cylindrical panel with h � 0:75; n � 3 and n � 0:02, when n1=n � 0:01.

Corresponds to the solid curve in Fig. 10.

Fig. 10. Average axial stress strain curves for cylindrical panel with h � 0:75; n � 3 and n � 0:02, when n1=n � 0:01. The solid curve

represent the reference vertex on the yield surface, while the other two curves represent a more sharp vertex and a more blunt vertex.
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The cases of buckling pattern localization discussed here for cylindrical panels, as well as a number of
other cases discussed in Section 2, are associated with elastic±plastic buckling behavior, but naturally
conditions for localization would also occur during purely elastic buckling. Therefore, a case of elastic
panel buckling is studied in Fig. 12 for h=b � 0:025 and h � 0:9, where the analysis of Koiter (1956) shows
unstable initial post-buckling behavior. For n � 0:01 in Fig. 12, the stress±strain curve shows a load
maximum, with a subsequent steep load reduction, whereas the curve for n � 0:1 shows no load maximum.
For n � 0:01, localization occurs, as illustrated in Fig. 13, in a manner very similar to the results shown in
Figs. 6 and 8, but it is to be noted that the numerical value of �av decays during localization, as is also seen
just after the load maximum in Fig. 12. For n � 0:1, Fig. 14 shows that no localization develops, as ex-
pected.

Computations have also been carried out for very narrow cylindrical panels, with h � 0 but, otherwise,
all parameters chosen are equal to those used in Figs. 5 and 7, respectively. These computations have
con®rmed the results found by Tvergaard and Needleman (1980) that the lower hardening material shows
buckling localization, whereas no load maximum and thus no localization is found for the higher hardening
material with n � 3.

As buckling localization is also found for some purely elastic cylindrical panels (Figs. 12 and 13), the
e�ect of the nonlinear material behavior may need to be emphasized. As described by the simple model of
Section 2.1, localization is predicted if a load maximum occurs, which includes load maxima predicted for
purely elastic structures. But material nonlinearity tends to soften the structural response, so that a
structure with no maximum in the elastic range may show a maximum in the plastic range, and therefore,
the nonlinear material behavior may strongly promote the localization process.

Fig. 12. Average axial stress strain curves for elastic cylindrical panel with h � 0:9, when n1=n � 0:01.
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Fig. 14. Normal de¯ections along the center line, x2 � 0, of elastic cylindrical panel with h � 0:9 and n � 0:1, when n1=n � 0:01.

Fig. 13. Normal de¯ections along the center line, x2 � 0, of elastic cylindrical panel with h � 0:9 and n � 0:01, when n1=n � 0:01.
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